JOHN JAY COLLEGE OF CRIMINAL JUSTICE
The City University of New York
524 West 59th Street, New York, NY, 10019

Syllabus for CHE 302, All Sections
Physical Chemistry
Theoretical Spectroscopy, Optics and Scientific Data Analysis

Professor’s name: Nicholas Petraco
Lab location: 5.66 North Hall
Contact hours: Fridays 12:00 and Open Door Policy
E-mail address: npetraco@gmail.com

Course description:
This is a one semester seminar course in basic quantum chemistry, theoretical spectroscopy, optics, materials and scientific data analysis. It is designed to give a forensic scientist a thorough understanding of the physical principles behind the spectroscopic/optical methods they use in the lab and how to analyze the data they obtain. The course is also intended to prepare students for graduate work in chemistry or forensic science. As such, the course material is intended to further develop critical thinking and problem solving skills.

Learning outcomes
By the end of the course students will be able to:

- Solve chemical problems, especially those related to forensic science, using the approach of quantum mechanics and classical mechanics and optics. Analyze the physicochemical/materials data obtained from different sources using scientific computing software R and Mathematica.
- Identify compounds and various materials commonly encountered in forensic science, by spectroscopy and microscopy. Utilize scientific data from literature searches of the scientific literature.
- Acquire deep understanding of physical phenomena that lead to the appearance of molecular spectra and the formation of images in optical and electron microscopy. Describe various perspectives how physicochemical and materials systems work. Recognize the importance of the knowledge at the interface of physics, chemistry, computing, engineering and forensic science.
- Collect and analyze molecular and atomic spectra. Extract information about chemical compounds from their spectral characteristics.
- Recognize the importance of accuracy and objectivity in collecting physicochemical data, especially with applications to the law.

Course pre-requisites or co-requisites
Students should have taken PHYS 203/204 (General Physics I and II with Calculus),
CHE 320 (Instrumental Methods I), MAT 241/242 (Calculus I and II) and be enrolled in CHE 321 (Instrumental Methods II).

Requirements / course policies
Unethical/unprofessional conduct which includes cheating will result in a failing grade and referral for additional action. *Attendance in lecture and recitation is mandatory.* More than five unexcused absences from any of these components will result in an automatic failing grade. Unexcused lateness or early departure will count as ½ an absence, up to 30 minutes. After 30 minutes you will be marked absent.

Texts
- **Required:**
     i. D. A. McQuarrie and J. D. Simon
     ii. ISBN-10: 0935702997
        1. Text is ordered and should be available in the bookstore
        2. John Jay Library does not own a copy unfortunately

- **Optional:**
  2. Color Atlas and Manual of Microscopy for Criminalists, Chemists and Conservators
     i. N. Petraco and T. A. Kubic
     ii. ISBN-10: 0849312450
        1. Text is ordered and should be available in the bookstore
        2. John Jay Library and the Science Department does own a copy.

Grading
- The grades for this course are based on two exams (60%), a final (30%) and short pop computational problem sets (10%).
Course calendar

- September 3: Basic Quantum Theory, Schrödinger equation and simple potentials. Basic R and Mathematica.
- September 10, 12: Probability/Statistics review, Particle in a Box, Particle counting and the Black Body curve again.
- September 17, 19: Harmonic/Anharmonic oscillator. Connections to vibrational spectroscopy. Numerov numerical solution to basic SEs.
- September 24, 26: Angular momentum, particle on a ring.
- September 30: Exam I
- October 3: Atomic Orbitals: The detailed hydrogenic atom system.
- October 8, 10: Atomic Orbitals (con't), Molecular orbitals, Huckel Model. Connections to electronic excitation spectroscopies.
- October 17, Anharmonic oscillator, molecular geometries.
- October 22, 24: Fourier Transforms, IR spectroscopy. IR microprobe microscopy.
- October 29, 31: The delta potential, Review
- November 5: Exam II
- November 7: Time dependence and transitions between states.
- November 12, 14: UV/Vis spectroscopy, Raman Spectroscopy.
- November 19, 21: Color and Filters
- November 26: Visible light microscopy: Compound, Polarized Light.
- December 10, 12: Catch up, Review.
- December 19: Final Exam, 12:30pm.

College wide policies for undergraduate courses (see the Undergraduate Bulletin, Chapter IV Academic Standards)

A. Incomplete Grade Policy
B. Extra Work During the Semester
C. Americans with Disabilities Act (ADA) Policies

Boilerplate: “Qualified students with disabilities will be provided reasonable academic
accommodations if determined eligible by the Office of Accessibility Services (OAS).
Prior to granting disability accommodations in this course, the instructor must receive
written verification of a student’s eligibility from the OAS which is located at L66 in the
new building (212-237-8031). It is the student’s responsibility to initiate contact with
the office and to follow the established procedures for having the accommodation notice
sent to the instructor.”

Source: Reasonable Accommodations: A Faculty Guide to Teaching College Students
with Disabilities, 4th ed., City University of New York, p.3.
(http://www.jjay.cuny.edu/studentlife/Reasonable_Accommodations.pdf)

Statement of the College Policy on Plagiarism
Plagiarism is the presentation of someone else's ideas, words, or artistic,
scientific, or technical work as one's own creation. Using the ideas or work
of another is permissible only when the original author is identified.
Paraphrasing and summarizing, as well as direct quotations require citations
to the original source.

Plagiarism may be intentional or unintentional. Lack of dishonest intent
does not necessarily absolve a student of responsibility for plagiarism.

It is the student’s responsibility to recognize the difference between statements
that are common knowledge (which do not require documentation) and
restatements of the ideas of others. Paraphrase, summary, and direct quotation
are acceptable forms of restatement, as long as the source is cited.

Students who are unsure how and when to provide documentation are advised to
consult with their instructors. The Library has free guides designed to help
students with problems of documentation. (John Jay College of Criminal Justice
Undergraduate Bulletin, http://www.jjay.cuny.edu/academics/654.php , see Chapter
IV Academic Standards)

Plagiarism detection software - the College subscribes to Turnitin.com and
Blackboard has a similar module called SafeAssign. If you will be using any plagiarism
detection software in your course, you must state it on the syllabus.